Maximum Likelihood Identification of Gaussian Autoregressive Moving Average Models

ثبت نشده
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Maximum-likelihood Identification of Sampled Gaussian Processes

This work considers sampled data of continuous-domain Gaussian processes. We derive a maximum-likelihood estimator for identifying autoregressive moving average parameters while incorporating the sampling process into the problem formulation. The proposed identification approach introduces exponential models for both the continuous and the sampled processes. We construct a likelihood function f...

متن کامل

Maximum Likelihood Estimation for All-Pass Time Series Models

An autoregressive-moving average model in which all roots of the autoregressive polynomial are reciprocals of roots of the moving average polynomial and vice versa is called an all-pass time series model. All-pass models generate uncorrelated (white noise) time series, but these series are not independent in the non-Gaussian case. An approximate likelihood for a causal all-pass model is given a...

متن کامل

Binomial Autoregressive Moving Average Models with an Application to U.S. Recessions

Binary Autoregressive Moving Average (BARMA) models provide a modeling technology for binary time series analogous to the classic Gaussian ARMA models used for continuous data. BARMA models mitigate the curse of dimensionality found in long lag Markov models and allow for non-Markovian persistence. The autopersistence function (APF) and autopersistence graph (APG) provide analogs to the autocor...

متن کامل

Ordinary and Proper Location M - Estimates for ARMA Models

Proper location M-estimates for a model with non-Gaussian autoregressive-moving average type errors are genuine maximum likelihood type estimates. whereas ordinary location M-estimates are those introduced by P. Huber for independent and identically distributed errors. The relative behavior of ordinary location Mestimates and proper location M-estimates is studied for situations with dependent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010